Jun 05, 2018
Luke Ridley
After the failed test, instant modifications to the design must be made. The most importantly was to protect the hardware so that no more time and money is lost waiting for parts. I have added a 3-D printed ABS cover that will protect the PXFmini connections and also add some style to the quadcopter. The design of the cover can be seen in the picture below:
In addition to protecting the quadcopter brains, the controller of the quadcopter has not been as responsive. Some research lead to a possible solution, the APM software that I am connecting to via Wi-Fi was interfering with the signal of the RC controller. The theory is this the Wi-Fi of the PXFmini operates at its own frequency band and the same goes for the RC controller. If the PXFmini comes close to the same band the PXFmini signal will be distorted and must be changed. In the US, a certain frequency band must be used for operations set by the Federal Communication Commission (FCC). Without getting too much in depth, you must choose the channel bands if you are operating in 2.4 GHz (Channel 9) or 5 GHz (Channel 40). Check out the chart below:
To check if the PXFmini is operating in the right channel use this command:
Check the channel # in the following file:
Make sure that the channel # is 40.
Now check the signal strength using this command:
After it is changed, connect to APM and turn on the controller. The interference has now been fixed.